Simulation of Diffusion Controlled Intermetallic Formation of Au/Al Interface

Rui Huang¹, Yik Yee Tan², Juergen Walter³, Heinz Pape¹, Xuejun Fan⁴ and Heinrich Koerner¹

¹Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany

²Infineon Technologies (Malaysia) Sdn. Bhd., Free Trade Zone, Batu Berendam, 75350 Malacca, Malaysia

³Infineon Technologies AG, Wernerwerkstrasse 2, 93049 Regensburg, Germany

⁴Lamar University, Beaumont, Texas 77710, USA

Email: <u>rui.huang@infineon.com</u>, Tel: +49 (0)89 234 24929

used as an initial analysis in the subsequent FEM modeling.

Table 2, Material data of Au/Al compounds

		1		
Compound	Composition (at. % Au)	Activation energy (eV)	Diffusion coefficient (µm²/s)	Density (g/cm ³)
Au	84-100			

For intermetallic growth, on the one hand, it is a common belief that during the growth of compounds, the interfacial stresses and stress gradients serves as additional driving force to accelerate

- multi-component systems with stoichiometric phases," *Acta Materialia*, vol. 58, pp. 2905-2911, 2010.
- [15] J. Svoboda, E. Gamsjäger, F. Fischer, and E. Kozeschnik, "Modeling of kinetics of diffusive phase transformation in binary systems with multiple stoichiometric phases," *Journal of Phase Equilibria and Diffusion*, vol. 27, pp. 622-628, 2006.